Cell‐Laden Multiple‐Step and Reversible 4D Hydrogel Actuators to Mimic Dynamic Tissue Morphogenesis
نویسندگان
چکیده
منابع مشابه
Optimization of electroactive hydrogel actuators.
To improve actuation of hydrogels, we utilized an emulsion polymerization to engineer porous structures into polyelectrolyte hydrogels. Porous hydrogels generated large deformation as a result of enhanced deswelling mechanisms; for instance, the decreased number of COO(-) groups that must be protonated in porous hydrogels to initiate bending. Measurements of the mechanical properties revealed t...
متن کاملIonoprinted Multi-Responsive Hydrogel Actuators
We report multi-responsive and double-folding bilayer hydrogel sheet actuators, whose directional bending response is tuned by modulating the solvent quality and temperature and where locally crosslinked regions, induced by ionoprinting, enable the actuators to invert their bending axis. The sheets are made multi-responsive by combining two stimuli responsive gels that incur opposing and comple...
متن کاملMethylcellulose Based Thermally Reversible Hydrogel System for Tissue Engineering Applications
The thermoresponsive behavior of a Methylcellulose (MC) polymer was systematically investigated to determine its usability in constructing MC based hydrogel systems in cell sheet engineering applications. Solution-gel analyses were made to study the effects of polymer concentration, molecular weight and dissolved salts on the gelation of three commercially available MCs using differential scann...
متن کاملAdaptable hydrogel networks with reversible linkages for tissue engineering.
Adaptable hydrogels have recently emerged as a promising platform for three-dimensional (3D) cell encapsulation and culture. In conventional, covalently crosslinked hydrogels, degradation is typically required to allow complex cellular functions to occur, leading to bulk material degradation. In contrast, adaptable hydrogels are formed by reversible crosslinks. Through breaking and re-formation...
متن کاملBioadhesive hydrogel microenvironments to modulate epithelial morphogenesis.
Epithelial cells polarize and differentiate into organotypic cell aggregates in response to cell-cell and cell-matrix interactions. For example, Madin-Darby Canine Kidney (MDCK) cells form spherical cell aggregates (cysts) with distinct apical and basolateral polarity when cultured three dimensionally (embedded) in type I collagen gels. To investigate the effects of individual extracellular fac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Science
سال: 2021
ISSN: 2198-3844,2198-3844
DOI: 10.1002/advs.202004616